Evaluating economic performance and antimicrobial consumption in French broiler production: improved healthcare management as a win-win strategy Youba Ndiaye¹, Guillaume Lhermie^{1,2}, Jonathan Rushton³ and Didier Raboisson¹ ¹CIRAD, UMR ASTRE, Montpellier, France, ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, Université de Toulouse, ENVT, Toulouse, France ²Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada ³Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK Introduction Materials Methodology Results Conclusion #### Introduction Materials Methodology Results Conclusion ## Challenges ▶ Resurgent public health issues ⇒ Animal production - ► Importance of inclusive approach - To better promote animal production sector - ► To consolidate and perpetuate the relationship between stakeholders - ► For that purpose ⇒ One Health framework - To emphasize the interconnection between human, veterinary and environmental health; - To promote the need for more prudent use practices in veterinary medicine (Sanders et al. (2020)). One of the main features of "One health" notion is related to : ▶ The management of antimicrobial uses (AMUs). #### Useful AMUs - ► Accroding to Lhermie et al. (2015), antibiotic treatments allow to respond to : - ► Animal welfare issues ⇒ by optimizing the quality of care; - ► Economic ⇒ since the animals are bred to produce animal products - Public health ⇒ in the fight against diseases infectious contagious and particularly zoonoses #### In poultry sector Antibiotics play a key role with a significant contribution to the intensification of animal husbandry #### Harmful AMUs the inappropriate use of an antibiotic creates selection pressure in favor of resistant bacteria : ## Antimicrobial Resistance (AMR) - ► AMR has become a major public health challenge worldwide due to: - loss of effectiveness for antibiotics impacts the health of people, the health of animals and the health of ecosystems - ► AMR represents a serious public threat, leading policymakers to implement measures to reduce antimicrobial use In poultry production: AMU contributes to the dissemination, selection, and persistence of AMR in human populations (Hedman et al. (2020)). #### Public policies - World context: - ► Management of AB uses ⇒ To the fight against AMR - European context: - Several directives related to Antibiotic uses; - ► French context: Ecoantibio plan - Phase 1: 25% reduction of antibiotic uses ⇒ 2012-2016; - ▶ Phase 2 with challenges about : - (i) sustainable change of antibiotic prescribing practices; - (ii) improvement of the living conditions of animals; - (iii) access to effective and economical health products, other than antibiotics To better orient towards sustainable antibiotic prescribing practices \Rightarrow importance to assess the impact of the antibiotic uses on different aspects (animal health, public health and economic considerations). #### Objectives - ▶ This study fits into this register by analyzing: - ▶ The relationship between AMUs and the profitability of farmers - ► Main objective of this study: to analyze the economic performance of farms by highlighting the health care criteria. Through this study, we attempt to provide an empirical evidence in order to highlight both : - benefit effects of AMUs - harmful effects of AMUs in the context of economic point of view \Rightarrow Filling the gap to the literature #### Introduction #### Materials Methodology Results Conclusion Data informations: \Rightarrow a large veterinary practices in France, representing 1086 flocks: - First, technico-economic data; - ► Second, veterinary procedures and drugs. ## Technical performance data The economic performance of farms measured via the profit per m^2 is used as our dependent variable. - Main characteristic of flocks: - ► Control variables: number of flocks (+), the weight of flocks(+), the average age of flocks (+), the average daily gain (ADG) (+), the density, the mortality (-) and the Condemnation (-) and different indexes such as performance index (IP) (+) and technical consumption index (ICT) (-). #### Veterinary prescription data: - ► Two metrics for AMUS data: animal course dose (ACD) and the weight of active ingredient (WAI). - ► Highest Priority Critically Important Antimicrobials (HP-CIAs) WHO - ► Nb of AMUs treaments - Nb of vaccines administered - ► Farmer visits and bacteriological analyzes #### Vaccine characteristics # Antimicrobial uses (AMUs) characteristics: Prescription age distribution ## Antimicrobial uses (AMUs) characteristics: Active substance #### Active substances of AMUs according to HPCIAs (WHO) Introduction Materials Methodology Results Conclusion #### Statistical analysis ► Aim: to dertermine a typology of flocks according to relative importance of veterinary practices #### Econometric approach: - Objective: - to highlight the main determinants of economic performance in the poultry production system. - ▶ to provide the contributions of veterinary practices in the economic performance of the breeder. - Specification: $$InE_i = \alpha + \beta InAMU_i + \gamma (InAMU_i)^2 + \delta InIVS_i + \theta_k X_{ik} + \epsilon_i$$ (1) ## Non-linear relationship between AMUs and economic performance - ▶ An inverted-U curve path exists \Rightarrow if $\beta > 0$ and $\gamma < 0$. - ► Instrumental Variables (IV) method. ## Identification strategies: - ▶ Analyze the relationship between E_i and $ABs_i \Rightarrow$ confounded by several factors. - Some are observed and will be controlled for - Others are difficult to capture - ► ⇒ Occurence of endogeneity bias #### Source of endogeneity: - simultaneity bias - measurement error bias - omitted variable bias - selection bias - time series autocorrelation - etc... To deal with endogeneity bias, we use an Instrumental Variables (IV) method Introduction Materials Methodology Results Conclusion ## Statistic results \Rightarrow Impact of Nb of AMU treatments on the profit ## Statistic results \Rightarrow Impact of HPCIAs criteria on the profit ## Statistic results ⇒ Vaccines administered ## Table: Profit per m² estimations | | Dependent variable: | | | | | | | |--------------------|---------------------|--------------------------|------------------------|--------------------------|--|--|--| | | 'Profit per m²' | | | | | | | | | (1) | (2) | (3) | (4) | | | | | Average_age | 0.1571*** | 0.1680*** | 0.1538*** | 0.1645*** | | | | | | (0.0381) | (0.0373) | (0.0512) | (0.0517) | | | | | ADG | 0.1178*** | 0.1143*** | 0.1160*** | 0.1109*** | | | | | | (0.0137) | (0.0134) | (0.0184) | (0.0187) | | | | | Density | 0.4779*** | 0.4293*** | 0.6171*** | 0.5665*** | | | | | | (0.0686) | (0.0678) | (0.1018) | (0.1027) | | | | | nb_treatments | -2.0287*** | -1.9696*** | 4.1260*** | 4.2063*** | | | | | | (0.3410) | (0.3311) | (0.9427) | (0.9559) | | | | | I(nb_treatments^2) | | | -2.2914***
(0.4872) | -2.3331***
(0.4941) | | | | | Nb_vaccines | 0.4233*** | 0.4207*** | 0.2755** | 0.2807** | | | | | | (0.1020) | (0.0996) | (0.1293) | (0.1306) | | | | | ID_Farmer | | 0.00001***
(0.000002) | | 0.00001***
(0.000003) | | | | | Constant | -12.6619*** | -12.0909*** | -16.8374*** | -16.1544*** | | | | | | (2.1449) | (2.1056) | (2.9290) | (2.9583) | | | | | Observations | 1,086 | 1,086 | 1,086 | 1,086 | | | | Note: *p<0.1; **p<0.05; ***p<0.01 Table: Profit estimation with alternative measures of ABs | | Dependent variable: log('Profit per m²') | | | | | |----------------------------------|--|-----------------------|-----------------------|-----------------------|--| | | | | | | | | | (1) | (2) | (3) | (4) | | | log(Average_age) | 0.6976*** | 0.6804*** | 0.6727*** | 0.6123*** | | | | (0.1183) | (0.1181) | (0.1182) | (0.1263) | | | Mortality (%) | -0.0169*** | -0.0163*** | -0.0160*** | -0.0161*** | | | | (0.0027) | (0.0027) | (0.0028) | (0.0029) | | | Condemnation (%) | -0.0702*** | -0.0699*** | -0.0704*** | -0.0755*** | | | | (0.0110) | (0.0110) | (0.0110) | (0.0117) | | | log(Density) | 1.0527***
(0.1129) | 1.0582***
(0.1125) | 1.0299***
(0.1151) | | | | log(ADG) | 2.0426*** | 2.0382*** | 2.0330*** | 1.9600*** | | | | (0.0976) | (0.0972) | (0.0973) | (0.1038) | | | log(WAI) | -0.0216*** | 0.4010** | 0.4022** | 0.3766* | | | | (0.0063) | (0.1830) | (0.1829) | (0.1958) | | | I(log(WAI)^2) | | -0.0136**
(0.0059) | -0.0137**
(0.0059) | -0.0126**
(0.0063) | | | log(Nb of vaccines administered) | | | 0.0016
(0.0014) | 0.0043***
(0.0014) | | | Constant | -11.2583*** | -14.4637*** | -14.3550*** | -10.5442*** | | | | (0.7107) | (1.5573) | (1.5598) | (1.6062) | | | Observations | 550 | 550 | 550 | 550 | | | Log Likelihood | 319.2699 | 321.9658 | 322.6301 | 284.6792 | | | Akaike Inf. Crit. | —624.5398 | —627.9316 | 627.2602 | 553.3583 | | Note: *p<0.1; **p<0.05; ***p<0.01 <ロト <回り < 回り < 重り < 重り ### Econometric results according to veterinary practice contributions - ▶ Non-rejected of an inverted-U shape curve accroding to AMUs: - The best performing flocks are those that use low doses of antibiotics: - Existence of a threshold beyond which the consumption of AMUs leads to a reduction in the economic performance - ▶ Variation (+) nb of AMUs treatments or HPCIAs criteria \Rightarrow Variation (-) of the profit per m^2 Introduction Materials Methodology Results Conclusion - ► Improving healthcare management and medical prevention positively impact economic performance and health outcome, ⇒ reducing antimicrobial use - Evidence that the economic performance follows an inverse-U pattern according to antimicrobial uses: - Marginal profit effect of antimicrobial use was a decreasing function of the antimicrobial input; - ▶ ⇒ Using antimicrobials is profitable for the farmers up to a certain threshold; - ▶ Policies encouraging farmers to work upstream from the occurrence of disease have the potential to perform better than regulations; - ► Encouraging adequate infection control practices by subsidizing them would benefit farmers and society. ## THANK YOU FOR ATTENTION